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The transport coefficients for a gas of smooth, inelastic hard spheres are
obtained from the Boltzmann equation in the form of Green–Kubo relations.
The associated time correlation functions are not simply those constructed from
the fluxes of conserved densities. Instead, fluxes constructed from the reference
local homogeneous distribution occur as well. The analysis exposes some
complexities to be expected in the application of linear response methods to
granular systems.
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1. INTRODUCTION

The derivation of macroscopic equations (e.g., hydrodynamics) and asso-
ciated transport coefficients from kinetic theory is limited in practice to
weakly coupled systems (low density gases, ideal plasmas, anharmonic
crystals). The application of formal methods from nonequilibrium statisti-
cal mechanics to this problem forty years ago provided the generality
missing in kinetic theory. (1) These methods lead to the expected macro-
scopic dynamics with formally exact expressions for the transport coeffi-
cients known as Green–Kubo (GK) expressions. The latter are time
integrals of equilibrium time correlation functions for the fluxes associated
with conserved densities. The simplest example is the diffusion coefficient D
for an impurity in a simple fluid

D=lim
tQ.

1
d
F
t

0
dt −Ov(t) · vP, (1)



where d is the dimension of the system, v is the impurity velocity, and the
brackets denote an equilibrium ensemble average. Similar expressions apply
for the viscosities, in terms of the autocorrelation function for the momen-
tum flux, and the thermal conductivity, in terms of the autocorrelation
function for the energy flux. The GK expressions provide an exact starting
point for analysis and modeling of strongly coupled systems. In particular,
they have stimulated extensive studies of transport via molecular dynamics
simulation of these equilibrium time correlation functions. Much of the
present knowledge about transport in strongly coupled systems (dense
gases, liquids, plasmas, solids) derives from analysis of appropriate GK
expressions.
Currently, there is great interest in the foundations of a fluid dynamics

for granular media. Kinetic theory and statistical mechanical methods have
been applied to idealized granular fluids comprised of smooth hard spheres
interacting with inelastic collisions. (2–6) The derivation of the corresponding
Navier–Stokes level equations from kinetic theory at low and moderate
densities has been given recently, with transport coefficients expressed as
functions of the restitution coefficient. (7–9) The results are in good agree-
ment with selected tests using molecular dynamics and Monte Carlo
simulations. (4) It is tempting to expect that some form of the more general
GK expressions should apply for granular media as well. (3, 10) The primary
difference from normal fluids is the absence of a reference stable, stationary
Gibbs state in terms of which the time correlation functions would be
defined. Instead, the corresponding homogeneous state for an undriven
system has a time dependence due to loss of energy on collisions (‘‘cool-
ing’’). This is referred to as the homogeneous cooling state (HCS). (11, 12)

Recently, analysis of impurity diffusion in a granular fluid has led to a GK
expression similar to (1) with the velocity autocorrelation function defined
in the HCS. (3,13) A related analysis of impurity mobility also gives a GK
expression for the mobility coefficient, (14) although not simply in terms of
the velocity autocorrelation function as is the case for normal fluids. The
difference is due to the replacement of the Gibbs state by the HCS. Simi-
lar differences in the time correlation functions for other transport coeffi-
cients are found here as well. This is an indication that translation of
linear response methods for normal fluids to granular fluids requires some
care.
The objective here is to derive GK expressions for a granular gas

based on the Boltzmann equation. This is accomplished by solving the
Boltzmann equation by a method paralleling that used to derive the GK
expressions from the Liouville equation. This may seem redundant since
the transport coefficients are already known by other methods. (7) However,
the interest here is not so much in the transport coefficients themselves as
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in their equivalent representation in terms of time integrals of appropriate
correlation functions. It is not a priori clear that such a representation
should exist since the reference homogeneous state is neither Gibbs-like nor
stationary. What is the distribution over which the correlation functions
should be defined? In what sense can these correlation functions be con-
sidered stationary when there is continual collisional cooling? What are the
relevant fluxes being correlated and how is their time dependence gener-
ated? The answers to these questions are all known for the case of elastic
collisions, but it is not obvious how they should be generalized to inelastic
collisions. The analysis here provides this generalization in detail. Although
limited to low density, it provides the necessary guidance and caution for a
more general derivation based on the Liouville equation. The correlation
functions are defined over a local HCS. When velocities are scaled with
respect to the time dependent thermal velocity, and time is measured in
terms of collision number, this state becomes stationary. As with the
mobility, it is found that the time correlation functions involve fluxes gen-
erated from the local HCS rather than from the local Gibbs state.
Furthermore, the time dependence is not simply determined from the
linearized Boltzmann operator but includes additional time dependence of
the temperature depending on the dimensions of the transport coefficient
being considered. Of course, the results obtained agree with those from the
Chapman–Enskog proceedure and the time correlation functions reduce to
those for the GK expressions in the elastic limit.
Although the changes found for a granular gas are significant, the

representation of transport coefficients as time integrals of stationary cor-
relation function remains and so we retain the terminology GK expres-
sions. The new complications might seem to limit the utility of such
expressions noted above for normal fluids. In particular, the Gibbs state is
known analytically while the HCS is only known approximately. Such
complications are associated with almost any nonequilibrium state and
appear in both the GK and Chapman–Enskog representations. Never-
theless, the representation in terms of a stationary dynamics allows
straightforward application of kinetic theory methods and molecular
dynamics simulation. The suitability of the GK representation for these
tools has been demonstrated recently for the self-diffusion coefficient. (15)

Excellent agreement between simulation and Boltzmann–Enskog kinetic
theory is observed at moderate densities over a wide range of dissipation.
Evaluation of GK expressions for other transport coefficients given here by
direct simulation Monte Carlo is in progress.
It is a pleasure to dedicate this work to Bob Dorfman, colleague and

mentor, who has taught us all so much about hard sphere transport
(among many other subjects).
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2. BOLTZMANN EQUATION AND HYDRODYNAMICS

The simplest model for a granular fluid is a system of N smooth hard
spheres or disks at low density interacting via inelastic collisions. The
collisions are characterized by a normal restitution coefficient a [ 1, where
a=1 is the elastic limit. An accurate description of this gas can be obtained
from a formal density expansion of the BBGKY hierarchy, just as for
normal gases. (6, 16) To leading order in the density, the single particle dis-
tribution function f(r, v, t) obeys the Boltzmann equation, with collisions
modified to account for the inelasticity,

(“t+v ·N) f=J[f, f]. (2)

The detailed form of the inelastic collision operator J is not required for
the discussion here, beyond the properties required for the macroscopic
balance equations:

F dv R 1v
1
2 mv

2

S J[f, f]=R 0
0

− dp2 z[f]

S . (3)

Here p=nT is the low density pressure, n being the number density and T
the granular temperature (with Boltzman’s constant set equal to unity).
The functional z[f] is the ‘‘cooling rate,’’ as will become apparent below.
The number density and temperature, as well as the flow velocity u are
defined in the usual way

R nnu
d
2 nT

S=F dv R 1v
1
2 mV

2

S f, (4)

with V=v−u, the velocity relative to the local flow. The balance equations
for these fields follow directly from moments of the Boltzmann equation
using Eq. (3),

Dtn+nN ·U=0, (5)

Dtui+(mn)−1 NjPij=0, (6)

DtT+
2
dn
(Pij Njui+N ·q)+Tz=0, (7)
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where Dt=“t+u ·N is the material derivative. The pressure tensor Pij and
heat flux q are linear functionals of f given by

Pij[r, t | f]=p(r, t) dij+F dv Dij(V) f(r, v, t), (8)

q[r, t | f]=F dv S(V) f(r, v, t). (9)

Finally, the functions Dij(V) and S(V) characterizing the irreversible parts
of the fluxes are

Dij(V) — m 1ViVj−
1
d
V2dij 2, S(V) — 1m

2
V2−

d+2
2
T2 V. (10)

Clearly, the balance equations are not closed until the fluxes are
expressed as functionals of the hydrodynamic fields n, u, and T. This can
be accomplished if a solution to the Boltzmann equation can be obtained in
‘‘normal form,’’

f(r, v, t)=f(v | {yb}), (11)

{yb(r, t)}} {n(r, t), u(r, t), T(r, t)}. (12)

The notation f(v | {yb}) means that the distribution is a functional of the
hydrodynamic fields yb(r, t), and that its space and time dependence occurs
only through that of these fields. If such a solution can be found, its use
in Eqs. (8) and (9) gives the fluxes as functionals of the fields. Such fluxes
are then referred to as constitutive equations. The constitutive equations
together with the exact macroscopic balance equations become a closed set
of hydrodynamic equations. The origin of a hydrodynamic description in
this context therefore is traced directly to the existence of a normal solution
to the Boltzmann equation on some length and time scales. In practice,
the functional form of this solution is constructed in some well-defined
approximation, leading to corresponding approximate constitutive and
hydrodynamic equations. The approximation of interest here is small
spatial variations of the hydrodynamic fields over distances of the order of
the mean free path. For gases with elastic collisions, the Chapman–Enskog
method generates the normal solution perturbatively, and to leading order
the constitutive equations are Newton’s viscosity law and Fourier’s heat
law. (1,17) The hydrodynamic equations become the Navier–Stokes equations.
Application of this method to granular gases leads to similar results.(7) The
analysis is modified here to obtain the same results in an equivalent form
with the transport coefficients represented by GK expressions.
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3. SMALL GRADIENT SOLUTION

The first step in constructing the desired solution to the Boltzmann
equation is to express it in terms of a reference distribution f (0),

f(r, v, t)=f(0)(v | {yb})+f(1)(r, v, t). (13)

The reference distribution is restricted to be normal and to give the exact
moments of Eq. (4), i.e.,

R nnu
d
2 nT

S=F dv R 1v
1
2 mv

2

S f (0). (14)

The Boltzmann equation then becomes

(“t+v ·N+L̄) f (1)−J[f(1), f (1)]=J[f(0), f (0)]−(Dt+V ·N) f (0), (15)

with the definition

L̄f (1)=−J[f(1), f (0)]−J[f(0), f (1)]. (16)

The left side of Eq. (15) generates the dynamics of f (1). The solution of
interest is such that f (1) should be proportional to the gradients of the
hydrodynamic fields, since f (0) provides their local values through the con-
straint (14). This requires that the right side of (15) be proportional to the
gradients of the fields. Evaluation of (Dt+V ·N) f (0) using the macroscopic
balance equations gives terms proportional to the gradiens, except for the
contribution from the cooling rate in (7). In addition, the nonvanishing
contribution J[f(0), f (0)] also is not of first order in the gradients. There-
fore, the reference distribution is finally characterized by the condition that
these non-gradient terms should vanish

J[f(0), f (0)]+Tz (0)
“f (0)

“T
=0, z (0)=z[f(0)]. (17)

This is an essential point in the analysis, and it is the origin of differences
from the case of elastic collisions, as is discussed below. The distribution
function f (0) is the analogue of the local Maxwellian for the case of elastic
collisions, but the solution to Eq. (17) for a < 1 is not the Maxwellian.
Symmetry and dimensional analysis requires that f (0) have the scaling form

f (0)(v | {yb})=nv
−d
0 (t) f

(0)g(Vg), Vg=V/v0(t), (18)
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where v0(t)=[2T(t)/m]1/2 is the ‘‘thermal’’ velocity and f (0) is an isotropic
function of Vg. Then Eq. (17) is equivalent to

J[f(0), f (0)]−
1
2
z (0)
“

“V
· (Vf (0))=0. (19)

Consider the initial condition f (1)(0)=0. This is a physically interest-
ing case for hydrodynamics since f (1)(0) does not contribute to the initial
value of the hydrodynamic fields, due to (14), and f (0)(0) is entirely
determined by the hydrodynamic initial values. In this case, f (1) is mani-
festly proportional to the gradients of the fields. Retaining only terms of
first order in these gradients, the Boltzmann equation becomes

(“t+L̄) f (1)=−f (0)Fb ·Nyb, (20)

with the definitions

F1=
1
n
1V+T

m
“

“V
ln f (0)2 , (21)

F2, ij=1
1
d
dijV ·

“

“V
−Vi

“

“Vj
2 ln f (0), (22)

F3=m−1
“

“V
ln f (0)−

V
2T
1d+V ·

“

“V
ln f (0)2 . (23)

A term from z[f] to first order in the gradients does not occur since it
vanishes. This follows from the fact that z is a scalar and can only be pro-
portional to N ·u at this order. Since F2, ij(V) is traceless, there is no such
contribution. The solution to Eq. (20) can be written in the form

f (1)=−Fb ·Nyb. (24)

When Eq. (24) is substituted into Eq. (20), the terms from “tNyb are higher
order in the gradients, except for b=3 which gives a contribution propor-
tional to the cooling rate. The coefficients of the gradients are then found
to obey the equations

(“t+L̄) F1−
Tz (0)

n
F3=f (0)F1, (25)

(“t+L̄) F2, ij=f (0)F2, ij, (26)

(“t+L̄−
3
2 z
(0)) F3=f (0)F3. (27)
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4. SCALING

The apparent simplicity of Eqs. (25)–(27) is misleading since L̄, z (0),
and Fa are functions of time through their dependence on the hydrody-
namic fields. This dependence occurs as well for a gas with elastic colli-
sions, but it can neglected in that case when solving the equations since it is
proportional to higher order gradients. For inelastic collisions, the tem-
perature gives a time dependence that is of zeroth order in the gradients
and cannot be neglected. However, it can be removed by a change of
variables to dimensionless forms. A characteristic length scale is given by
the mean free path a and a dimensionless time s is defined accordingly by

ds=
v0(t)
a
dt. (28)

For simplicity we will take here a=(nsd−1)−1, where s is the diameter of
the particles, omitting a factor that depends on the dimension of the
system. Integrating over an interval t shows that s is an average number of
collisions during that time. Moreover, introduce dimensionless functions
Fg
b and Fg

b as

F1=
2v0(t)
n

Fg
1 (V

g), F2, ij=2F
g
2, ij(V

g), F3=
2

mv0(t)
Fg
3 (V

g), (29)

F1=
2a
vd0(t)

Fg
1 (V

g, s), F2, ij=
2na
vd+10 (t)

Fg
2, ij(V

g, s), F3=
2na

mvd+20 (t)
Fg
3 (V

g, s).
(30)

In dimensionless form Eqs. (25)–(27) become

(“s+L̄g)(Fg
1 −Fg

3 )=f
(0)g(Fg

1 −F
g
3 ), (31)

(“s+L̄g+12 z
g) Fg

2, ij=f
(0)gFg

2, ij, (32)

(“s+L̄g− 12 z
g) Fg

3=f
(0)gFg

3 . (33)

with the definitions

L̄g=L̄g+
1
2
zg
“

“Vg ·V
g, (34)

L̄g=
a

v0(t)
L̄, zg=

az (0)

v0(t)
. (35)
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The right sides of Eqs. (31)–(33) are independent of s, as are L̄g and zg.
The integration is now trivial

Fg
1 (V

g, s)=Fg
3 (V

g, s)+F
s

0
ds − e−sŒL̄*f (0)g(Fg

1 −F
g
3 ), (36)

Fg
2, ij(V

g, s)=F
s

0
ds − e−sŒ(L̄*+

1
2 z*)f (0)gFg

2, ij, (37)

Fg
3 (V

g, s)=F
s

0
ds − e−sŒ(L̄*−

1
2 z*)f (0)gFg

3 . (38)

In the derivation of the above expressions, the assumed initial condition,
implying that all the Fg

b vanish for s=0, has been used.

5. CONSTITUTIVE EQUATIONS

The pressure tensor and heat flux are determined from their definitions
in Eqs. (8) and (9). Substitution of Eqs. (13) and (24) leads to results valid
to first order in the gradients,

Pij[r, t | f]=p(r, t) dij−F dv Dij(V) Fb ·Nyb, (39)

q[r, t | f]=−F dv S(V) Fb ·Nyb. (40)

Using fluid symmetry, these expressions reduce to

Pij=pdij−g 1Njui+Niuj−
2
d
dijN ·u2 , (41)

q=−o NT−m Nn. (42)

These are the expected Navier–Stokes constitutive equations, except for the
additional term in the heat flux proportional to Nn. It will be seen below
that this new term is due entirely to the deviation of f (0) from the
Maxwellian. The expressions for the transport coefficients are identified as

g=
2nmav0(t)
d2+d−2

F dVg Dg
ij(V

g) Fg
2, ij(V

g, s), (43)

o=
nav0(t)
d

F dVg Sg(Vg) ·Fg
3 (V

g, s), (44)

m=
mav30(t)
d

F dVg Sg(Vg) ·Fg
1 (V

g, s). (45)
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The dimensionless forms of S and Dij are

Sg — 1Vg2−
d+2
2
2 Vg, Dg

ij=V
g
i V

g
j −
1
d
Vg2dij.

To put these expressions in the desired Green–Kubo form, define the
adjoint operators Lg andLg by

F dVg X(Vg) R L̄
g

L̄g
S Y(Vg)=−F dVg Y(Vg) R L

g

Lg
S X(Vg), (46)

for arbitrary functions X and Y. From Eq. (34) it is trivially seen that

Lg=Lg+
1
2
zgVg ·

“

“Vg . (47)

The expression of Lg can be obtained by using the properties of the
Boltzmann collision operator, but it will be not needed here.
Also, define ‘‘correlation functions’’ by

OXYP=F dVg f (0)g(Vg) X(Vg) Y(Vg). (48)

Then, with these definitions and Eqs. (36)–(38), the transport coefficients
given by Eqs. (43)–(45) can be rewritten as

g=
2nmav0(t)
d2+d−2

F
s

0
ds −ODg

ij(s
−) Fg

2, ijP e
−12 sŒz*, (49)

o=
nav0(t)
d

F
s

0
ds −OSg(s −) ·Fg

3P e
1
2 sŒz*, (50)

m=
2To
n
+
mav30(t)
d

F
s

0
ds −OSg(s −) · (Fg

1 −F
g
3 )P. (51)

The time dependence of the correlation functions is given by

X(s)=esL*X(Vg). (52)

Equations (49)–(51) are the Green–Kubo expressions for the transport
coefficients of a low density granular gas. It is expected that the spectrum
of Lg assures that the correlation functions decay to zero for s± 1. This
expectation is confirmed by low order matrix representations for Lg, (13)
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kinetic model representations, (18) and molecular dynamics simulations. (15)

In this limit, the above expressions agree with those obtained by the
Chapman–Enskog method. (7)

6. DISCUSSION

To discuss the GK expressions for a granular gas it is instructive to
write the corresponding results for elastic collisions (a=1). In that case,
f (0) is the local Maxwellian and

Fg
1 Q 0, Fg

2, ij Q D
g
ij, Fg

3 Q Sg(V). (53)

Then mQ m0=0, and

gQ g0=
2nav0m
d2+d−2

F
s

0
ds − ODg

ij(s
−) Dg

ijP, oQ o0=
nav0
d

F
s

0
ds −OSg(s −) ·SgP.

(54)

Since the temperature is constant to leading order in the gradients for
a=1, the variable s=(v0/a) t is simply proportional to time. These are the
standard forms for the GK expressions in terms of the autocorrelation
functions composed from the ‘‘microscopic’’ fluxes Sg and Dg

ij. There are
several differences that occur for granular gases:

• The correlation functions are defined as averages over f (0). This
local HCS distribution is determined from (19) and differs from the
Maxwellian for all a < 1.

• The correlation fuctions are not constructed from Sg and Dg
ij alone.

Each is paired with another function from the set Fg
b.

• The time integration is replaced by an integration over the average
collision number, s. The correlation functions have approximate exponen-
tial decay in the variable s rather than t.

• The integrals over s are not controlled solely by the correlation
functions. In addition there are time dependent factors arising from the
change of the temperature over the duration of the integral.

The most surprising among these differences is the replacement of one
of the ‘‘microscopic’’ fluxes Sg or Dg

ij by one of the new variables Fg
b

determined from f (0) through Eqs. (21)–(23). If f (0) were replaced by the
local Maxwellian f (0)*M in the above analysis, the correlation functions
OSg(s −) ·SgP and ODg

ij(s
−) Dg

ijP would appear in Eqs. (49)–(51). However,
this would not be a consistent solution to the Boltzmann equation and the
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transport coefficients would not have the correct dependence on a (e.g.,
m would vanish for all a). The role of f (0) is more than just a local reference
state with the exact moments for n, T, and u. In addition, it must be an
approximate solution for the dynamics. In dimensionless form, f (0)g is a
universal function of Vg determined from the equation

Jg[f(0)g, f (0)g]−
1
2
zg
“

“Vg · (V
gf (0)g)=0, zg=zg[f (0)g], (55)

without reference to any particular hydrodynamic state. The above analysis
shows that (55) is necessary for a consistent ordering of the solution in
terms of gradients. The local reference distribution for a given hydrodynamic
state follows from this solution according to

f (0)=n(r, t) 1 m
2T(r, t)
2d/2 f (0)g 51 m

2T(r, t)
21/2 (v−u(r, t))6 . (56)

Its dependence on the hydrodynamic variables is determined by the
solution to (55).
An estimate for the Fg

b can be obtained from an approximation to
f (0)g obtained by a polynomial expansion, (11, 12) which to leading order is

f (0)g=f (0)gM 51+
1
4
cg(a) 1Vg4−5Vg2+

15
4
26 , (57)

cg(a)=
32(1−a)(1−2a2)
81−17a+30a2(1−a)

. (58)

This is known to be accurate to within a few percent for all a and Vg [ 1.
In this approximation the variables Fg

b become (for d=3)

Fg
1=

1
4 c

g(a) Sg, (59)

Fg
2, ij=D

g
ij[1−

1
2 c

g(a)(Vg2− 52)], (60)

Fg
3 (V

g)=Sg[1− 12 c
g(a)(Vg2−1)]. (61)

Thus, a straightforward ‘‘guess’’ for the GK relations based on results for
normal fluids would miss the contributions proportional to cg(a). Since this
is small, for not too large inelasticity the quantitative effect would not be
significant. However, such a guess might also miss the factors of e ±

1
2 sŒz* in

(49) and (50) for similar reasons and these could have quantitative as well
as conceptual consequences.
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Linear response methods typically construct the response function for
spatial perturbation of the homogeneous state of a specific type: those that
couple only to the microscopic conserved densities. This follows from con-
sideration of an initial local equilibrium state or maximum entropy state.
Then manipulation of the response function for the conserved densities
using the microscopic conservation laws leads to GK expressions in terms
of the microscopic fluxes. One such quite reasonable approach has been
described in ref. 10. As a specific example of those results, the shear viscos-
ity at low density is given by (49) except with Fg

2, ij replaced by its elastic
limit Fg

2, ij Q D
g
ij. Thus the factor e

−12 sz*, due to collisional cooling, is prop-
erly accounted for in the analysis, as is the stationary state dynamics of the
scaled variables. Still, there is a difference due to their assumed perturba-
tion of the HCS by linear combinations of the conserved fluxes. As this
does not agree with the Chapman–Enskog result questions about their
formal analysis arise. These issues and a derivation of the GK expressions
from the Liouville equation will be discussed elsewhere.
In ref. 10 spatial perturbations of the HCS are introduced via linear com-

binations of the local densities of mass, energy, and momentum. The linear
response functions (correlation functions) are therefore defined for the
HCS. Since the HCS is known to be unstable to long wavelength perturba-
tions, the long time limit cannot be performed in a simple way. In practice,
as noted above, the time correlation functions are expected to decay rapidly
so if the correlation time is small compared to that for the onset of the
instability the GK coefficients are meaningful. They characterize transport
near the HCS for intervals of its stability. This limitation does not exist for
the analysis here, derived for perturbations relative to the local HCS. The
latter is a specific function of the hydrodynamic variables, determined from
the Boltzmann equation, but whose time dependence occurs only through
those variables. Hence there can be no question of its stability. The more
general Chapman–Enskog solution determines the time dependence of
those hydrodynamic variables so the space and time dependence of the
local HCS remains well defined as long as the nonlinear Navier–Stokes
equations provide a good description on the macrsoscopic scale. There is
growing evidence that this is the case, and that linear instability does not
imply any pathology for the solution to the nonlinear equations.
The GK expressions and the Chapman–Enskog solution implicitly

presume the existence of a hydrodynamic description on appropriate length
and time scales. Given that existence, they provide the details of the
description. To explore the approach to a hydrodynamic stage and the
conditions for its validity, more detailed information about the nonhydro-
dynamic or microscopic modes is required. The study here does not bear
on those questions.
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APPENDIX A: EQUIVALENCES

The viscosity is given by (43) with (37)

g=
2nmav0(t)
d2+d−2

F
s

0
ds − F dVg Dg

ij(V
g) e−sŒ(L̄*+

1
2 z*)f (0)gFg

2, ij. (A1)

The equivalence of this GK expression with the shear viscosity obtained
by the Chapman–Enskog method is shown as follows. Take s± 1 and
perform the time integral in (A1) to get

g=
2nmav0(t)
d2+d−2

F dVg Dg
ij(V

g) 1L̄ g+
1
2
zg2

−1

f (0)gFg
2, ij. (A2)

The results (A.11) and (A.9) of refs. 4 and 7 are

g=
1

d2+d−2
F dV Dij(V) Cij(V), (A3)

where Cij is the solution to the integral equation

1 L̄−z (0)T “
“T
2 Cij=f(0)F2, ij. (A4)

In the dimensionless units defined above this becomes

(L̄g+12 z
g) Cg

ij(V
g)=f(0)gFg

2, ij, (A5)

with

Cij —
2na
vd+10 (t)

Cg
ij. (A6)

The change from L̄Q L̄g is due to the change from the derivative with
respect to T at constant V to derivative with respect to T at constant Vg,
when account is taken of the different units used. Substitution of (A4)–(A6)
into (A3) confirms equivalence with the GK result (A2). The analysis is
similar for the other two transport coefficients.
Now consider the limit aQ 1 in (A1),

g=
2nmav0(t)
d2+d−2

F
s

0
ds − Cg(s), (A7)
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with the correlation function

Cg(s)=F dVg Dg
ije
−sŒL̄*f (0)gDg

ij.

Use has been made of Fg
2, ij Q D

g
ij, z

g
Q 0, and L̄g

Q L̄g in this limit.
Moreover, f (0)g becomes the Maxwellian. This is in fact the dimensionless
form of the GK stress tensor autocorrelation function in the low density
limit, with the time in units of the constant average collision time a/v0.
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